Fraunhofer diffraction of a partially blocked spiral phase plate

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vortex characteristics of Fraunhofer diffractions of a plane wave by a spiral phase plate limited by pseudoring polygonal apertures.

We introduce a multilevel spiral phase plate (SPP) limited by a pseudoring polygonal aperture (PRPA). Such an SPP has the advantages of easier fabrication and greater suppression of the sidelobes of the diffraction field over that generated with a polygonal aperture (PA). The Fraunhofer diffraction fields generated by an SPP with a PRPA or with a PA have the same topological charge features and...

متن کامل

Fraunhofer diffraction of light by human enamel.

Fraunhofer diffraction patterns of human enamel samples were photographed with a helium-neon laser beam (lambda = 633 nm). The first-order diffraction angle was in reasonable agreement with a prediction based upon enamel prisms acting as a two-dimensional grating. These results support the hypothesis that enamel diffracts light because of the periodic structure of enamel prisms with interprisma...

متن کامل

Ray transfer matrix for a spiral phase plate.

We present a ray transfer matrix for a spiral phase plate. Using this matrix we determine the stability of an optical resonator made of two spiral phase plates and trace stable ray orbits in the resonator. Our results should be relevant to laser physics, optical micromanipulation, quantum information, and optomechanics.

متن کامل

Fraunhofer Diffraction Effects on Total Power for a Planckian Source

An algorithm for computing diffraction effects on total power in the case of Fraunhofer diffraction by a circular lens or aperture is derived. The result for Fraunhofer diffraction of monochromatic radiation is well known, and this work reports the result for radiation from a Planckian source. The result obtained is valid at all temperatures.

متن کامل

Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes.

A photon echo experiment in Tm(3+):YAG is reported that shows, for the first time to the authors' knowledge, the time-domain equivalent of the transition from near- to far-field diffraction, including Talbot self-imaging effects. The experiment demonstrates the huge dispersion capability of photon echoes and opens the way to further exploration of space-time duality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optics Express

سال: 2011

ISSN: 1094-4087

DOI: 10.1364/oe.19.012873